On Polynomial Hamiltonian Planar Vector Fields
نویسندگان
چکیده
منابع مشابه
08w5055 Classical Problems on Planar Polynomial Vector Fields
At the end of the 19th century Poincaré and Hilbert stated three problems which are still open today: the problem of the center and the problem of Poincaré, stated by Poincaré in 1885 and in 1891, and Hilbert’s 16th problem, stated in Hilbert’s address at the International Congress of Mathematicians in Paris in 1900. The first two and the second part of Hilbert’s 16th problem are on planar poly...
متن کاملThe displacement map associated to polynomial unfoldings of planar Hamiltonian vector fields
We study the displacement map associated to small one-parameter polynomial unfoldings of polynomial Hamiltonian vector fields on the plane. Its leading term, the generating function M(t), has an analytic continuation in the complex plane and the real zeroes of M(t) correspond to the limit cycles bifurcating from the periodic orbits of the Hamiltonian flow. We give a geometric description of the...
متن کاملCommuting Planar Polynomial Vector Fields for Conservative Newton Systems
We study the problem of characterizing polynomial vector fields that commute with a given polynomial vector field on a plane. It is a classical result that one can write down solution formulas for an ODE that corresponds to a planar vector field that possesses a linearly independent commuting vector field. This problem is also central to the question of linearizability of vector fields. Let f ∈...
متن کاملHilbert's 16th Problem and bifurcations of Planar Polynomial Vector Fields
The original Hilbert’s 16th problem can be split into four parts consisting of Problems A–D. In this paper, the progress of study on Hilbert’s 16th problem is presented, and the relationship between Hilbert’s 16th problem and bifurcations of planar vector fields is discussed. The material is presented in eight sections. Section 1: Introduction: what is Hilbert’s 16th problem? Section 2: The fir...
متن کاملDeformed Hamiltonian vector fields on Lagrangian fibrations
Networks of planar Hamiltonian systems closely resemble Hamiltonian system in R, but with the canonical equation for one of the variables in each conjugate pair rescaled by a number called the Turing instability parameter. To generalise these dynamical systems to symplectic manifolds in this paper we introduce and study the properties of deformed Hamiltonian vector fields on Lagrangian fibratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1993
ISSN: 0022-0396
DOI: 10.1006/jdeq.1993.1112